
138 https://doi.org/10.1107/S2053273320016769 Acta Cryst. (2021). A77, 138–148

research papers

Coordination sequences of crystals are of
quasi-polynomial type

Yusuke Nakamura,a* Ryotaro Sakamoto,b Takafumi Masea and Junichi Nakagawaa

aGraduate School of Mathematical Sciences, University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8914, Japan,

and bDepartment of Mathematics Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku,

Yokohama, 223-8522, Japan. *Correspondence e-mail: nakamura@ms.u-tokyo.ac.jp

The coordination sequence of a graph measures how many vertices the graph

has at each distance from a fixed vertex and is a generalization of the

coordination number. Here it is proved that the coordination sequence of the

graph obtained from a crystal is of quasi-polynomial type, as had been

postulated by Grosse-Kunstleve et al. [Acta Cryst. (1996), A52, 879–889].

1. Introduction

For a graph � and a fixed vertex v0 of �, and for a non-negative

integer n, the coordination sequence sn is defined as the

number of vertices of � at distance n from v0. For example, the

first few terms of the coordination sequence of the graph in

Fig. 1 are s0 ¼ 1, s1 ¼ 4, s2 ¼ 16, s3 ¼ 24. That is, the graph has

only one point at distance 0 from the origin (by definition), has

four vertices at distance 1, and so on. An easy observation

shows that in this case we have sn ¼ 8n (n � 2).

In this paper, we consider a periodic graph � in the

following sense:

(A) � is a (possibly directed) graph with a free Zn action

such that the quotient graph �=Zn is finite.

This assumption is motivated from the crystallographic

viewpoint. Our main example is a graph obtained by a crystal,

i.e. the vertices of � are the set of atoms of the crystal, and to

each atomic bond connecting two atoms u and v, we associate

an edge connecting the vertices u and v. Then, the number s1 is

nothing but the usual coordination number and the coordi-

nation sequence ðsnÞn can be thought of as its generalization.

The coordination sequences of periodic graphs are

predicted to be of quasi-polynomial type (see Definition 1.2)

by Grosse-Kunstleve et al. (1996). After that, various mathe-

matical methods to calculate coordination sequences have

been developed and they are actually calculated in many

specific cases as in the work of Conway & Sloane (1997), Eon

(2002, 2012), Goodman-Strauss & Sloane (2019), O’Keeffe

(1995, 1998), Shutov & Maleev (2018, 2019, 2020).

The purpose of this paper is to give the affirmative answer

to the question posed by Grosse-Kunstleve et al. (1996) (see

Theorem 2.2 for the more general statement).

Theorem 1.1. The coordination sequence of a graph satisfying

the condition (A) is of quasi-polynomial type. In particular, its

generating function is rational. Furthermore, it becomes of

polynomial type if the quotient graph �=Zn has only one

vertex.
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Here, we recall the definition of functions of quasi-

polynomial type.

Definition 1.2. A function p : Z�0�!Z is called a quasi-

polynomial if there exist an integer N> 0 and polynomials

p0; . . . ; pN�1 2 Q½X� with the following condition:

(i) For any n 2 Z�0, the equality pðnÞ ¼ piðnÞ holds if N

divides n� i.

We say that a function f : Z�0�!Z is of quasi-polynomial

type if there exist an integer M � 0 and a quasi-polynomial

p : Z�0�!Z such that f ðnÞ ¼ pðnÞ holds for any integer

n � M. As a special case, we say that f is of polynomial type

when N ¼ 1.

The paper is organized as follows: in Section 2, we prove

Theorem 1.1 in more general settings (Theorem 2.2). The key

ingredient of the proof of Theorem 2.2 is monoid theory in

abstract algebra. Readers unfamiliar with monoid theory are

advised to read Appendix A first, where we summarize defi-

nitions and propositions in monoid theory with typical

examples. In Appendix A, we also prove Theorem A12, which

is a key to the proof of Theorem 2.2. In Section 3, we explain

how to apply Theorem 2.2 to the graph obtained from a

crystal, and we give some examples.

2. Coordination sequences of graphs with abelian
group action

In this paper, a graph � ¼ ðV;EÞ means a directed

simple graph, i.e. V is the set of vertices and

E � V � V n fðx; xÞ j x 2 Vg is the set of edges. We say that a

graph � ¼ ðV;EÞ is finite when both V and E are finite sets.

Remark 2.1. A simple undirected graph can be regarded as a

graph in the sense above. In fact, since a simple undirected

graph �0 consists of sets V 0 and E0 � fA � V 0 j #A ¼ 2g,

we obtain a graph � from �0 by setting V ¼ V 0 and

E ¼ fðx; yÞ 2 V � V j fx; yg 2 E0g. Here the symbol #A is

employed to denote the cardinality of the set A.

For vertices x; y 2 V, we denote by distðx; yÞ 2 Z�0 [ f1g

the length of a shortest directed path in E from x to y. If there

is no directed path connecting x and y, then the distance

distðx; yÞ is defined as infinite.

Let H be a group. We say that H acts on � ¼ ðV;EÞ when H

acts on both V and E and these actions are compatible, i.e.

we assume that H acts on V and the action preserves

the adjacency. We then obtain the quotient graph

�=H :¼ ðV=H;E=HÞ. We say that an H-action on � is free

when any element of H, except for the unit, does not fix a

vertex. For more detail, we refer the reader to Eon (2012).

Theorem 2.2. Let � ¼ ðV;EÞ be a graph and let v0 2 V be a

vertex. Suppose that an abelian group H acts freely on � and

its quotient graph �=H is finite. Then the function

Z�0�!Z; n 7!#fy 2 V j distðv0; yÞ � ng

is of quasi-polynomial type. Hence, its difference

Z�0�!Z; n7!#fy 2 V j distðv0; yÞ ¼ ng

is also of quasi-polynomial type. In particular, their generating

functions are rational. Moreover, both the functions are of

polynomial type if �=H has only one vertex.

Remark 2.3. It is worth emphasizing that we consider not only

an undirected graph, but also a directed graph. Hence

Theorem 2.2 can be used for a graph whose edges have a

direction. See Example 3.5 for a concrete example.

First, we may assume that there exists an abelian group G

such that H is a subgroup of G and V � G as a set. In fact,

since the H-action on V is free, we have a bijective map

H � ðV=HÞ ! V and we can identify V ¼ H � ðV=HÞ as sets.

Let C ¼ Z=cZ be the cyclic group with order c ¼ #ðV=HÞ.

Then, we can identify V=H ¼ C as sets, and hence we may

take G ¼ H � C ¼ V.

Remark 2.4. We note that if H ¼ Zn as in Theorem 1.1, then

we may also take G ¼ Rn. Indeed, for c ¼ #ðV=HÞ, if

v1; . . . ; vc 2 R
n satisfy vi � vj 62 Z

n for any i 6¼ j, then V can be

realized as V ¼
F

1�i�cðvi þ Z
n
Þ � R

n. Here we use the

symbol
F

to denote the disjoint union of sets.

We regard the abelian group G as an additive group, and

denote by 0 2 G the identity element of G. For subsets

A;B � G and an element � 2 G, we put

Aþ B :¼ faþ b j a 2 A; b 2 Bg � G;

�þ A :¼ f�þ a j a 2 Ag � G:
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Figure 1
Graph with a Z2 translation symmetry. The number attached to each
vertex represents the graph distance from the origin O.



Since V � G, we may assume that v0 ¼ 0 by translation. Since

V=H is a finite set, there is a finite subset F of V such that

0 2 F and

V ¼
G
�2F

ð�þHÞ

holds.

Definition 2.5. (1) For any two elements �; � 2 F, we put

P�;� :¼ f�þ h� � j ð�; �þ hÞ 2 E; h 2 Hg � G:

Since the map P�;��!E=H; x7!½ð�; �þ xÞ� is injective, the

finiteness of the set E=H implies that the set P�;� is finite.

(2) For elements �0; . . . ; �m 2 F with m 2 Z�0, we put

Pð�0; . . . ; �mÞ :¼ P�0;�1
þ P�1;�2

þ 	 	 	 þ P�m�1;�m
� G:

By convention, we define Pð�0Þ ¼ f0g when m ¼ 0. Note that

Pð�0; . . . ; �mÞ is also a finite set since each P�i;�iþ1
is a finite set.

Remark 2.6. Let �; � 2 F. We say that a vertex v 2 V is of

�-type if there is an element h 2 H such that v ¼ �þ h. For

an �-type vertex v 2 V and x 2 P�;�, the vertex vþ x is of

�-type and ðv; vþ xÞ 2 E. In other words, P�;� is the set of

translations from an �-type vertex v to a �-type vertex

connected to v. Therefore, for an �0-type vertex v 2 V and

x 2 Pð�0; . . . ; �mÞ, the vertex vþ x is of �m-type and there is a

path from v to vþ x of length m. For a concrete example of

P�;� and Pð�0; . . . ; �mÞ, we refer the reader to Example 3.3.

Lemma 2.7. For elements �0; . . . ; �m 2 F with m 2 Z�0, it

follows that

�0 þ Pð�0; . . . ; �mÞ � fx 2 V j distð�0; xÞ � mg:

Proof. This lemma is obvious by definition (cf. Remark 2.6).
&

For a subset S � F, we define a monoid MS as a submonoid

of Z�0 �G. We note that Z�0 �G admits a monoid structure

by regarding Z�0 and G as monoids by their addition [cf.

Example A3(3)].

Definition 2.8. Let S be a subset of F. We define MS � Z�0 �G

as the submonoid of Z�0 �G generated by the elements in the

set (
ðd; xÞ 2 Z>0 �G

���
x 2 Pð�0; �1; . . . ; �mÞ for some �0; . . . ; �m 2 S

with 0 � m � d and �0 ¼ �m

)
:

Note that MS admits a graded monoid structure by the first

projection MS ! Z�0, i.e. the degree of ðd; xÞ 2 MS is defined

to be d [cf. Definition A9(1)].

Remark 2.9. For a generator ðd; xÞ of MS, there exists a

path

y0 ! y1 ! 	 	 	 ! ym�1 ! ym

on � of length m � d such that yi is of �i-type for some �i 2 S,

�0 ¼ �m and x ¼ ym � y0. Although the sum of generators is

simply defined by the addition of Z�0 �G, it is not possible in

general to interpret the sum as the procedure to connect paths,

even if one is allowed to translate each path and to change the

order of segments at will. For example, if S ¼ f�0; �1; �2; �3g,

x 2 Pð�0; �1; �0Þ and y 2 Pð�2; �3; �2Þ, then xþ y does not

always correspond to a path on �. See Example 3.3 for a

concrete example.

Lemma 2.10. For a non-empty subset S of F, the monoid MS is

finitely generated. More precisely, MS is generated by

elements with degree at most #S.

Proof. Take an element x 2 Pð�0; �1; . . . ; �mÞ for some

�0; . . . ; �m 2 S with m>#S and �0 ¼ �m. Since m>#S, one

has �i ¼ �j for some 0 � i< j<m, and hence

x 2 Pð�0; �1; . . . ; �i�1; �i ¼ �j; �jþ1; . . .�mÞ

þ Pð�i; �iþ1; . . . ; �jÞ:

This fact shows that MS is generated by elements with degree

at most #S. Since there exist only finitely many such elements,

MS is finitely generated. &

Next, for a subset S � F and �; � 2 S, we define X
�;�
S as a

subset of Z�0 � V, which is proved to be a finitely generated

MS-module in Lemma 2.13.

Definition 2.11. (1) For any two elements �; � 2 F, we define

the set X�;� � Z�0 � V by

X�;� :¼

(
ðd; �þ xÞ

2 Z�0 � V

���
x 2 Pð�0; �1; . . . ; �mÞ for some �0; . . . ; �m 2 F

with 0 � m � d; �0 ¼ �; and�m ¼ �:

)
:

(2) Let S be a non-empty subset of F and �; � 2 S. We

define the set X
�;�
S � Z�0 � V by
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X
�;�
S :¼

(
ðd; �þ xÞ

2 Z�0 � V

���
x 2 Pð�0; �1; . . . ; �mÞwith 0 � m � d;

�0 ¼ �; �m ¼ �; and S ¼ f�0; . . . ; �mg

)
:

(3) For a subset Y � Z�0 �G and d 2 Z�0, we define

Yd � G by

Yd ¼ fx 2 G j ðd; xÞ 2 Yg:

Remark 2.12. (1) By definition, for an element ðd; yÞ 2 X�;�,

the vertex y is of �-type and there is a path from � to y of

length at most d. In other words, the set ðX�;�Þd consists of

the �-type vertices whose distance from � is less than or equal

to d.

(2) If a �-type vertex y is in ðX�;�
S Þd, then we have a special

path from � to y, namely, there exists a path

� ¼ y0 ! y1 ! 	 	 	 ! ym�1 ! ym ¼ y

of length m � d such that yi is of �i-type for some �i 2 S and

f�0; . . . ; �mg ¼ S. Note that this special path must visit �-type

vertices at least once for each � in S, which plays an essential

role in the proof of Lemma 2.13. The set ðX�;�
S Þd consists of the

�-type vertices with such a special path. See Example 3.3 for a

concrete example.

Lemma 2.13. Let S be a non-empty subset of F and let

�; � 2 S. Then, X
�;�
S is a finitely generated graded MS-module,

where the graded structure of X
�;�
S is induced by the first

projection X
�;�
S �!Z�0; ðd; yÞ7!d.

Proof. First, we shall prove that X
�;�
S is a graded MS-module,

i.e. ðMSÞd þ ðX
�;�
S Þd0 � ðX

�;�
S Þdþd0 holds for d; d0 � 0 [cf. Defi-

nition A9(2)]. Since each element of MS can be written as the

sum of generators of the form in Definition 2.8, it is sufficient

to show that any generator ðd; xÞ of MS of the form in Defi-

nition 2.8 and any element ðd0; �þ yÞ 2 X
�;�
S satisfy

ðdþ d0; �þ xþ yÞ 2 X
�;�
S . Since ðd; xÞ is a generator of the

form in Definition 2.8, we have x 2 Pð�0; . . . ; �mÞ for some

�0; . . . ; �m 2 S with 0 � m � d and �0 ¼ �m. Moreover, by

the definition of X
�;�
S , we have y 2 Pð�00; . . . ; �0m0 Þ for some

�00; . . . ; �0m0 2 S with 0 � m0 � d0 satisfying �00 ¼ �, �0m0 ¼ �
and S ¼ f�00; . . . ; �0m0 g.

Since S ¼ f�00; . . . ; �0m0 g, there exists 0 � i � m0 such that

�0i ¼ �0 ¼ �m. Then, we obtain

yþ x 2 Pð�00; . . . ; �0m0 Þ þ Pð�0; . . . ; �mÞ

� Pð�00; . . . ; �0i�1; �
0
i ¼ �0; �1; . . . ;

�m ¼ �
0
i; �
0
iþ1; . . . ; �0m0 Þ

� ðX
�;�
S Þdþd0 � �;

which proves �þ xþ y 2 ðX
�;�
S Þdþd0. Hence, we have

ðMSÞd þ ðX
�;�
S Þd0 � ðX

�;�
S Þdþd0 and thus X

�;�
S is a graded

MS-module.

Next we shall see that X
�;�
S is generated by elements with

degree at most ð#SÞ
2
� 1. Let �00; . . . ; �0m0 2 S be a sequence

with m0 � ð#SÞ
2, �00 ¼ �, �0m0 ¼ � and S ¼ f�00; . . . ; �0m0 g. Since

m0 � ð#SÞ
2, there exist � 2 S and a subset � � f0; 1; . . . ;m0g

such that #�>#S and �0i ¼ � holds for any i 2 �.

Here we claim that there exist j; j0 2 � with j< j0 such that

f�00; . . . ; �0j; �
0
j0þ1; . . . ; �0m0 g ¼ S.

Let c ¼ #� and let j1 < j2 < 	 	 	 < jc be the elements of �.

Since S ¼ f�00; . . . ; �0m0 g, for each � 2 S n f�g, we can take k�
with 1 � k� � c� 1 such that � appears among

�0jk�þ1; �
0
jk�
þ2; . . . ; �0jk�þ1�1:

Since c ¼ #�>#S, we can take

‘ 2 f1; 2; . . . ; c� 1g n fk� j � 2 S n f�gg:

Then j :¼ j‘ and j0 :¼ j‘þ1 satisfy the claim.

Then the inclusion

Pð�00; . . . ; �0m0 Þ � Pð�00; . . . ; �0j; �
0
j0þ1; . . . ; �0m0 Þ þ Pð�0j; . . . ; �0j0 Þ

shows that an element of X
�;�
S of degree larger than ð#SÞ2 � 1

can be written by the sum of an element of X
�;�
S of lower

degree and an element of MS. Therefore, X
�;�
S is generated by

elements with degree at most ð#SÞ
2
� 1. Since there exist only

finitely many such elements, X
�;�
S is finitely generated. &

Lemma 2.14. Let d � 0 be an integer. Then the following

claims are valid.

(1) One has

fx 2 V j dist ð0; xÞ � dg ¼
G
�2F

ðX0;�Þd:

(2) For any element � 2 F, one has

ðX0;�
Þd ¼

[
0;�2S�F

ðX0;�
S Þd:

Here S runs over the subsets of F containing 0 and �.

Proof. Claim (2) is obvious by definition. We only give a proof

of claim (1). The inclusion

fx 2 V j dist ð0; xÞ � dg 

G
�2F

ðX0;�
Þd

follows from Lemma 2.7. Let us show the opposite

inclusion. Take an element x 2 V with m :¼ dist ð0; xÞ � d.

By the definition of the distance, there are edges

ðx0; x1Þ; . . . ; ðxm�1; xmÞ 2 E with x0 ¼ 0 and xm ¼ x. For each i,

the unique element �i 2 F is determined by xi 2 �i þH. Then

xiþ1 � xi 2 P�i;�iþ1
, and so one has
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x ¼ xm ¼
Pm�1

i¼0

ðxiþ1 � xiÞ 2 Pð�0; . . . ; �mÞ:

Since m � d, we conclude x 2 ðX0;�mÞd. &

Proof of Theorem 2.2. For an element � 2 F, put

�� :¼ fS � F j 0; � 2 Sg and write Pð��Þ for its power set.

Then Lemma 2.14 and the inclusion–exclusion principle

imply

#fx 2 V j dist ð0; xÞ � dg

¼
P
�2F

#ðX0;�Þd

¼
P
�2F

#
�S

S2��
ðX0;�

S Þd

�
¼
P
�2F

P
�2Pð��Þ

ð�1Þ#�þ1 #
�T

S2�ðX
0;�
S Þd

�
:

Hence it is enough to show that the function

’�;� : Z�0�!Z; d 7!#
\
S2�

ðX0;�
S Þd

is of quasi-polynomial type.

Lemma 2.10 and Proposition A6(3) show that
T

S2� MS is a

finitely generated graded monoid. Furthermore, Lemma 2.13

and Theorem A12 show that
T

S2� X0;�
S is a finitely generated

graded (
T

S2� MS)-module. Hence Proposition A11 implies

that the function ’�;� is of quasi-polynomial type, which

completes the proof of the first assertion.

By Lemma 2.10, the monoid MS is generated by elements of

degree one if #S ¼ 1. Therefore if #F ¼ 1, the functions in

Theorem 2.2 turn out to be actually of polynomial type, which

completes the proof of the second assertion. &

Remark 2.15. It is natural to ask how to calculate the quasi-

polynomials in Theorem 2.2 from the graph � in some

concrete situations.

By the argument in this section, in order to determine the

quasi-polynomials, it is sufficient to determine the Hilbert

polynomial of
T

S2�ðX
0;�
S Þ for each �. If we know generators

of the monoid
T

S2� MS and the module
T

S2�ðX
0;�
S Þ, then the

Hilbert polynomial of
T

S2�ðX
0;�
S Þ can be calculated in prin-

ciple via a free resolution (cf. Bruns & Herzog, 1993, Lemma

4.1.13), and can be computed by the standard computational

commutative algebra packages Singular and Macaulay2.

Actually in Example 3.1, Example 3.2 and the face-centered

cubic system in Example 3.4, generators of
T

S2� MS andT
S2�ðX

0;�
S Þ are easily computed. Therefore, in these cases, it is

not hard to calculate their Hilbert polynomials from the

material in this section. It should be noted, however, that in

many cases, even when generators are known, it is easier to

calculate their coordination sequences by predicting the

region that consists of the vertices with distance at most n and

proving it by induction.

Computing generators of
T

S2� MS and
T

S2�ðX
0;�
S Þ is a

more difficult problem in general situations. Indeed, Theorem

A12 or even its proof does not give a procedure to compute

their generators. For example, as we will see later, in the case

of Example 3.3, computing generators of
T

S2� MS andT
S2�ðX

0;�
S Þ by hand is not easy at all, whereas the graph itself

looks simple.

3. Examples

In this section, we explain using some examples how to apply

Theorem 2.2 to the graph obtained from crystals. In Example

3.3, we see the complicated notations defined in the previous

section. It should be noted in advance, however, that although

Theorem 2.2 guarantees that the coordination sequence of a

crystal is of quasi-polynomial type, it is not practical in general

to concretely calculate the whole sequence through the

theorem or its proof (see Remark 2.15). Throughout this

section, we take G as a Euclidean space so that the reader can

easily visualize examples.

Example 3.1. One of the simplest examples of crystal structure

is the square tiling. Let G ¼ R2, H ¼ V ¼ Z2 and let

E ¼
�
ðv; v� eiÞ j v 2 V; i ¼ 1; 2

�
;

where e1 ¼ ð1; 0Þ and e2 ¼ ð0; 1Þ. It is obvious that this graph

satisfies all the assumptions of Theorem 2.2. An easy obser-

vation shows that the coordination sequence of this graph

from the origin is 1; 4; 8; 12; . . . , the general term of which can

be written as s0 ¼ 1, sn ¼ 4n (n � 1).

Let us briefly look at the notations in the previous section.

In this case, the finite set F used in Section 2 consists of the

origin O. To be precise, since F ¼ fOg, we have

PO;O ¼ f�e1;�e2g. Hence, the MF � Z�0 � Z
2 is the graded

monoid generated by ð1; ð0; 0ÞÞ, ð1;�e1Þ and ð1;�e2Þ, which

coincides with the XF since #F ¼ 1.

In contrast, in the case where F consists of two or more

points, calculating the coordination sequence by this proce-

dure is much more complicated as seen in Remark 2.15 and

Example 3.3.

Example 3.2. Let � ¼ ðV;EÞ be the graph corresponding to

the hexagonal tiling as in Fig. 2. Let v1; v2; v3 be the vectors

corresponding to the edges from O, respectively. Note that

these vectors satisfy v1 þ v2 þ v3 ¼ ð0; 0Þ. Let G ¼ R2 and

H ¼ Zð2v1 þ v2Þ þ Zðv1 � v2Þ. Then, V and E are H-invariant

and the quotient graph �=H is finite. Since V ¼ H t ðv1 þHÞ,

we have F ¼ fO; v1g. An easy observation shows that the

coordination sequence of this graph is 1; 3; 6; 9; . . . , the

general term of which can be written as s0 ¼ 1, sn ¼ 3n

(n � 1).

Example 3.3. Let us see the notations used in Section 2 on an

example. Let G ¼ R2 and H ¼ 2Z2. Let

V ¼ H t ðð1; 1Þ þHÞ t ðð0; 1Þ þHÞ

142 Yusuke Nakamura et al. � Coordination sequences of crystals Acta Cryst. (2021). A77, 138–148

research papers



and let

E ¼ fðv1 þ h; v2 þ hÞ; ðv2 þ h; v1 þ hÞ j ðv1; v2Þ 2 E0; h 2 Hg;

where

E0 ¼fðO;�ð1; 1ÞÞ; ðO; ð1;�1ÞÞ; ðO; ð0;�1ÞÞ;

ðð�1;�1Þ; ð0;�1ÞÞg:

Then, the graph � ¼ ðV;EÞ is as in Fig. 3.

The group H acts freely on � as translations and the

quotient graph �=H has three vertices. The F in Section 2 can

be taken as F ¼ fA;B;Cg, where A ¼ O, B ¼ ð�1;�1Þ,

C ¼ ð0;�1Þ. Then, the PZ;Y for each Z;Y 2 fA;B;Cg in

Definition 2.5 is

PA;A ¼ PB;B ¼ PC;C ¼ ;;

PA;B ¼ f � ð1; 1Þ; ð1;�1Þg; PB;A ¼ f � ð1; 1Þ; ð�1; 1Þg;

PA;C ¼ fð0;�1Þg; PC;A ¼ fð0; 1Þg;

PB;C ¼ fð1; 0Þg; PC;B ¼ fð�1; 0Þg

and, for example, one can compute

PðA;B;C;B;AÞ ¼ PA;B þ PB;C þ PC;B þ PB;A

¼ f � ð1; 1Þ; ð1;�1Þg þ fð1; 0Þg þ fð�1; 0Þg

þ f � ð1; 1Þ; ð�1; 1Þg

¼ fð0; 0Þ;�ð0; 2Þ;�ð2; 0Þ;�ð2; 2Þg:

Next, let us see generators of the monoids and the modules in

Definition 2.8 and Definition 2.11, respectively. For each

subset S � fA;B;Cg satisfying A 2 S, a generator of the

monoid MS can be computed as

MfAg ¼ MfA;Cg ¼ Z�0fð1; ð0; 0ÞÞg;

MfA;Bg ¼ MfA;B;Cg ¼ Z�0fð1; ð0; 0ÞÞ; ð2;�ð2; 0ÞÞ; ð2;�ð0; 2ÞÞ;

ð2;�ð2; 2ÞÞg;

i.e. for example, one can take

fð1; ð0; 0ÞÞ; ð2;�ð2; 0ÞÞ; ð2;�ð0; 2ÞÞ; ð2;�ð2; 2ÞÞg

as a generator of the monoid MfA;Bg. For each subset

S � fA;B;Cg satisfying A 2 S and for each Y 2 S, a generator

of the MS-module XA;Y
S can be taken as

XA;A
fAg ¼ MfAg þ fð0; ð0; 0ÞÞg;

XA;A
fA;Bg ¼ MfA;Bg þ fð2; ð0; 0ÞÞ; ð2;�ð2; 0ÞÞ; ð2;�ð0; 2ÞÞ;

ð2;�ð2; 2ÞÞg;

XA;B
fA;Bg ¼ MfA;Bg þ fð1;�ð1; 1ÞÞ; ð1; ð1;�1ÞÞg;

XA;A
fA;Cg ¼ MfA;Cg þ fð2; ð0; 0ÞÞg;

XA;C
fA;Cg ¼ MfA;Cg þ fð1; ð0;�1ÞÞg;

XA;A
fA;B;Cg ¼ MfA;B;Cg þ fð3; ð0; 0ÞÞ; ð3;�ð2; 0ÞÞ; ð3;�ð2; 2ÞÞ;

ð4;�ð0; 2ÞÞg;

XA;B
fA;B;Cg ¼ MfA;B;Cg þ fð2; ð�1;�1ÞÞ; ð3; ð1;�1ÞÞ;

ð4; ð3;�1ÞÞ; ð4; ð3; 3ÞÞg;

XA;C
fA;B;Cg ¼ MfA;B;Cg þ

�
ð2; ð0;�1ÞÞ; ð2; ð2;�1ÞÞ; ð3; ð0; 1ÞÞ;

ð3; ð0;�3ÞÞ; ð3; ð�2;�1ÞÞ; ð3; ð�2;�3ÞÞ
�
:

For example, XA;B
fA;B;Cg contains ð6; ð�3;�1ÞÞ, which corre-

sponds to the path

ð0; 0Þ ! ð�1;�1Þ ! ð�2;�2Þ ! ð�2;�3Þ

! ð�3;�3Þ ! ð�4;�2Þ ! ð�3;�1Þ

of length 6. Indeed, ð6; ð�3;�1ÞÞ decomposes as

ð6; ð�3;�1ÞÞ ¼ ð2; ð�2;�2ÞÞ þ ð2; ð�1;�1ÞÞ þ ð2; ð0; 2ÞÞ;

where ð2; ð�2;�2ÞÞ; ð2; ð0; 2ÞÞ 2 MfA;B;Cg and ð2; ð�1;�1ÞÞ is

contained in the generator described above.

Using these data, it is possible in principle to calculate the

coordination sequence of the graph. The actual calculation is,

however, extremely laborious and shall be omitted in this

paper. The coordination sequence of this graph is obtained by

Wakatsuki (2018) as
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Figure 3
Graph with a 2Z2-translation symmetry. The number attached to each
vertex represents the graph distance from the origin O. The color of each
vertex represents the equivalence class in �=H.

Figure 2
Hexagonal tiling. The number attached to each vertex represents the
graph distance from the origin O.



sn ¼

1 ðn ¼ 0Þ;
9
2 n� 1

2 ðn> 0 : oddÞ;
9
2 n� 1 ðn> 0 : evenÞ;

8<
:

which is not of polynomial type but of quasi-polynomial

type.

Note that � has another simple realization onR2 as in Fig. 4.

Since the coordination sequence depends only on its abstract

graph structure, these two graphs have the same coordination

sequence. As seen in this example, the choice of a realization

of a graph is not relevant to Theorem 1.1.

Example 3.4. Let us consider the graphs corresponding to

crystal structures of dimension 3. These graphs have such a

translation symmetry that the corresponding quotient graph is

finite. Therefore, it follows from Theorem 1.1 that the coor-

dination sequences of these graphs are of quasi-polynomial

type. It should be stressed that, by definition, any crystal

structure of any dimension falls into this category.

Let us consider as an example the graph corresponding to

the face-centered cubic system. Let G = R3, H = V =

Ze1 þ Ze2 þ Z
1
2 ðe1 þ e2 þ e3Þ and

E ¼ v; vþ
1

2
ð�e1 � e2 � e3Þ

� �
j v 2 V

	 

;

where e1 ¼ ð1; 0; 0Þ, e2 ¼ ð0; 1; 0Þ, e1 ¼ ð0; 0; 1Þ and the signs

in the definition of E are arbitrary. Then, the graph � ¼ ðV;EÞ

corresponds to the face-centered cubic system. It is clear by

definition that H acts on � and the quotient is finite. Note that

while the H defined above is the largest translation symmetry

of this system, it might be more natural to take

H ¼ Ze1 þ Ze2 þ Ze3 when one considers crystal structure.

Even in that case, the graph � has an H-action and the

quotient is finite. As seen in this example, the choice of a unit

cell is not relevant to Theorem 1.1.

Example 3.5. We give one of the simplest examples of a

periodic directed graph (one should compare this with

Example 3.1). Let G ¼ R2, H ¼ V ¼ Z2 and let

E ¼ fðv; vþ eiÞ j v 2 V; i ¼ 1; 2g;

where e1 ¼ ð1; 0Þ and e2 ¼ ð0; 1Þ. An easy observation shows

that the coordination sequence of this graph from the origin is

1; 2; 3; 4; . . . , the general term of which can be written as

sn ¼ nþ 1 (n � 0).

In this case, the finite set F used in Section 2 consists of

the origin O. To be precise, since F ¼ fOg, we have

PO;O ¼ fe1; e2g. Hence, the MF � Z�0 � Z
2 is the graded

monoid generated by ð1; ð0; 0ÞÞ, ð1; e1Þ and ð1; e2Þ, which

coincides with the XF since #F ¼ 1.

Example 3.6. We give one of the simplest examples of a

periodic graph with H having a torsion. Let G ¼ R2 and

H1 ¼ 2Z2. Let

V ¼ fðx; yÞ 2 Z2
j xþ y is eveng

and let

E ¼ fðv1 þ h; v2 þ hÞ; ðv2 þ h; v1 þ hÞ j ðv1; v2Þ 2 E0; h 2 H1g;

where

E0 ¼ fðO; ð0; 2ÞÞ; ðO; ð2; 0ÞÞ; ðO; ð1; 1ÞÞ; ðð1; 1Þ; ð1; 3ÞÞ;

ðð1; 1Þ; ð3; 1ÞÞg:

Then, it is obvious that � ¼ ðV;EÞ and H1 satisfy all

the assumptions of Theorem 2.2. In this case, we have

V ¼ H1 t ðð1; 1Þ þH1Þ and #ðV=H1Þ ¼ 2.

The graph � also admits a Z=2Z-action as follows. Let

Z=2Z ¼ fe; �g, where e is the identity element of Z=2Z. We

define a Z=2Z-action on V by the map � : V�!V satisfying

�ðx; yÞ ¼
ðxþ 1; yþ 1Þ ðif x is evenÞ;
ðx� 1; y� 1Þ ðif x is oddÞ:

	

Then, it is easy to see that the set E of edges is stable under the

Z=2Z-action, and that � commutes with the H1-action.

Therefore the product H :¼ H1 � ðZ=2ZÞ acts on �. Then,

� ¼ ðV;EÞ and H also satisfy all the assumptions of Theorem

2.2, and we have #ðV=HÞ ¼ 1 in this case. Therefore,

according to Theorem 2.2, the coordination sequence of this

graph should not only be of quasi-polynomial type, but also of

polynomial type.

Actually, an easy observation shows that the coordination

sequence of this graph from the origin is 1; 5; 12; 20; 28; . . . ,

the general term of which can be written as s0 ¼ 1, s1 ¼ 5,

sn ¼ 8n� 4 (n � 2).

4. Conclusion

In this paper, we proved that if a graph � has a free Zn-action

such that the quotient �=Zn is finite, then the coordination

sequence of � must be of quasi-polynomial type (Theorem 1.1

and Theorem 2.2). As we mentioned in Example 3.4, Theorem

144 Yusuke Nakamura et al. � Coordination sequences of crystals Acta Cryst. (2021). A77, 138–148

research papers

Figure 4
Another realization of the graph in Fig. 3. This graph can be obtained by
adding vertices and edges to the graph in Fig. 2. If v 2 V is a vertex of a
hexagon, then the graph distance between v and O is exactly the same as
that in Example 3.2.



2.2 can be applied to all crystals, which by definition have such

a translation symmetry. It should be noted, however, that

except for some simple cases, Theorem 2.2 or even its proof

does not give a specific procedure to concretely calculate

coordination sequences (Remark 2.15). Establishing a

systematic method to calculate coordination sequences from

an algebraic perspective is left for a future work. The first step

would be to determine the period N and the number M in

Definition 1.2. Once that is done, we can determine the quasi-

polynomial by just calculating the first ðdegðpÞ þ 1ÞN þM � 1

terms.

APPENDIX A
On finitely generated monoids

In this appendix, we first recall some basic definitions and

results on finitely generated monoids [for more detail we refer

the reader to Bruns & Gubeladze (2009)]. Then, we will prove

Theorem A12, which plays an essential role in the proof of

Theorem 2.2.

A1. Monoids and modules

In this paper, all the monoids considered are commutative,

that is, a monoid is a commutative semi-group with the unit

element 0, and the operation is written additively.

Definition A1. (1) A monoid is a set M with a binary operation

þ with the following three conditions:

(i) ðaþ bÞ þ c ¼ aþ ðbþ cÞ holds for a; b; c 2 M.

(ii) aþ b ¼ bþ a holds for any a; b 2 M.

(iii) There exists an element 0 2 M such that 0þ a ¼ a

holds for any a 2 M.

(2) A monoid M is called integral when it has the cancela-

tion property, i.e. when xþ y ¼ xþ z implies y ¼ z for all

x; y; z 2 M.

(3) A submonoid of a monoid M is a subset N � M such

that N contains the unit of M and is closed under the additive

operation of M.

(4) A map f : M! N between two monoids is called a

homomorphism when f ð0Þ ¼ 0 and f ðaþ bÞ ¼ f ðaÞ þ f ðbÞ

hold for any a; b 2 M.

(5) Let F be a subset of a monoid M. We say that F generates

M if M ¼ Z�0F holds, i.e. any element m can be written by

m ¼ n1m1 þ 	 	 	 þ nrmr

for some r � 1, ni 2 Z�0 and mi 2 F. A monoid M is said to be

finitely generated when M is generated by a finite subset of M.

(6) For an integral monoid M, we define the group of

differences Mgp by Mgp :¼ ðM �MÞ= � with the following

relation �:

(i) ða; bÞ � ðc; dÞ if and only if aþ d ¼ bþ c.

Note that Mgp becomes an abelian group by the addition

½ða; bÞ� þ ½ðc; dÞ� ¼ ½ðaþ c; bþ dÞ�. Furthermore, we may

consider M as a submonoid of Mgp by the injective homo-

morphism M�!Mgp; m7!½ðm; 0Þ�.

Remark A2. The notions in (3), (4) and (5) correspond to a

subgroup, a group homomorphism and a finitely generated

group in group theory, respectively. For a monoid M and a

field k, we can associate the monoid ring k½M� (see Bruns &

Gubeladze, 2009, p. 51 for detail). Then the finite generation

of M is equivalent to the finite generation of k½M� as a

k-algebra (cf. Bruns & Gubeladze, 2009, Proposition 2.7).

Example A3. (1) If each element of a monoid M has an

inverse, then M is an abelian group. In particular, any abelian

group is an integral monoid. All the monoids appearing in

Section 2 are submonoids of abelian groups. Hence they are

always integral.

(2) The set Z�0 of non-negative integers is a typical example

of a monoid that is not a group.

(3) For monoids M and N, their Cartesian product M � N

admits a monoid structure by ða; bÞ þ ðc; dÞ ¼ ðaþ c; bþ dÞ

for ða; bÞ; ðc; dÞ 2 M � N.

(4) Using the notion of polyhedral convex geometry, we can

obtain various non-trivial examples of monoids. A cone C in

Rn is the intersection of finitely many linear closed halfspaces

(cf. Bruns & Gubeladze, 2009, Definition 1.14). A linear closed

halfspace here means a closed halfspace which is defined

by a linear function on Rn, i.e. it is a set of the form

fðx1; . . . ; xnÞ 2 R
n
j
P

i aixi � 0g where ai 2 R. Then C \ Zn is

a submonoid of Zn.

We say that a cone C is rational if C is the intersection of

finitely many linear closed rational halfspaces, i.e. linear closed

halfspaces defined by linear functions
P

i aixi with rational

coefficients ai 2 Q. In this case, C \ Zn is known to be a

finitely generated monoid [see Proposition A8(1) below].

For example, if

M1 :¼ fða; bÞ 2 Z2
�0 j b � 2ag;

M2 :¼ fða; bÞ 2 Z2
�0 j b �

ffiffiffi
2
p

a
�
;

M1 is finitely generated, but M2 is not. M1 is actually generated

by ð1; 0Þ, ð1; 1Þ and ð1; 2Þ. Furthermore, we have M
gp
1 =

M
gp
2 = Z2.

Next we introduce the notation of M-modules. It corre-

sponds to the notation of R-modules for a commutative ring R

in ring theory.

Definition A4. Let M be a monoid.

(1) An M-module is a set X equipped with an operation

M � X�!X , which is written as +, satisfying the following

conditions for all m1;m2 2 M and x 2 X :

(i) ðm1 þm2Þ þ x ¼ m1 þ ðm2 þ xÞ,

(ii) 0þ x ¼ x.

(2) Let F be a subset of an M-module X. The module X

is said to be generated by F if M þ F ¼ X holds, where we

set
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M þ F :¼ fmþ f j m 2 M; f 2 Fg � X:

The module X is said to be finitely generated if some finite

subset F � X generates X.

Example A5. (1) In Section 2, we mainly consider the

following situation. M is a submonoid of an abelian group G,

and X is a subset of G. Then X is an M-module (by the

addition of G) if and only if M þ X � X holds.

(2) Let M be a submonoid of a monoid N. Then N and

N-modules can be thought of as M-modules. Suppose that N is

finitely generated as an M-module and X is a finitely gener-

ated N-module. Then X is finitely generated as an M-module.

We prove this claim below. Since N is finitely generated as

an M-module, there exists a finite subset F � N such that

N ¼ M þ F. Furthermore, since X is finitely generated as an

N-module, there exists a finite set E � X such that

X ¼ N þ E. Then we have

X ¼ ðM þ FÞ þ E ¼ M þ ðF þ EÞ:

Since F þ E is a finite set, X is finitely generated as an

M-module.

(3) A polyhedron P in R
n is the (possibly unbounded)

intersection of finitely many affine closed halfspaces (cf. Bruns

& Gubeladze, 2009, Definition 1.1). An affine closed halfspace

here means a closed halfspace which is defined by an affine

function on Rn, i.e. it is a set of the form

fðx1; . . . ; xnÞ 2 R
n
j bþ

X
i

aixi � 0g

for some b; ai 2 R. Let P ¼ H1 \ 	 	 	 \Hc be a polyhedron,

where Hi is an affine halfspace. Then the recession cone recðPÞ

of P is defined by

recðPÞ :¼ H01 \ 	 	 	 \H 0c;

where H0i denotes the linear closed halfspace parallel to Hi.

Then we have recðPÞ þ P � P since xþ y 2 Hi holds for

x 2 H 0i and y 2 Hi for each i. Since recðPÞ þ P � P, we have

ðrecðPÞ \ Zn
Þ þ ðP \ Zn

Þ � P \ Zn:

Therefore, P \ Zn is a ðrecðPÞ \ Zn
Þ-module.

We say that a polyhedron P ¼ H1 \ 	 	 	 \Hc is rational if

each halfspace Hi is defined by an affine function bþ
P

i aixi

of rational coefficients b; ai 2 Q. In this case, P \ Zn is known

to be a finitely generated ðrecðPÞ \ Zn
Þ-module [see Proposi-

tion A8(2) below].

For example, if

H1 : ¼ fðx; yÞ 2 R2
j x � 1g; H2 :¼ fðx; yÞ 2 R2

j y � 1g;

H3 : ¼ fðx; yÞ 2 R2
j xþ y � 4g;

then we have

H01 : ¼ fðx; yÞ 2 R2
j x � 0g; H02 :¼ fðx; yÞ 2 R2

j y � 0g;

H03 : ¼ fðx; yÞ 2 R2
j xþ y � 0g:

Therefore we have

P \ Zn
¼ fðx; yÞ 2 Z2

j x � 1; y � 1; xþ y � 4g;

recðPÞ \ Zn
¼ fðx; yÞ 2 Z2

j x � 0; y � 0g:

It is easy to see that P \ Zn is generated by (1,3), (2,2) and

(3,1) as a ðrecðPÞ \ Zn
Þ-module.

We list some properties on finite generation.

Proposition A6. (1) (Bruns & Gubeladze, 2009, Proposition

2.8) Let M be a finitely generated monoid and let X be a

finitely generated M-module. Then any M-submodule of X is

finitely generated as an M-module.

(2) (cf. Ogus, 2018, ch. I, Theorem 2.1.17.6) Let f : M�!N

be a homomorphism between integral monoids and let N0 � N

be a submonoid. If M and N0 are finitely generated, then so is

f�1ðN0Þ.

(3) (cf. Bruns & Gubeladze, 2009, Corollary 2.11) Let N be

an integral monoid and let M1 and M2 be submonoids of N. If

M1 and M2 are finitely generated, then M1 \M2 is also a

finitely generated monoid.

Remark A7. Via the correspondence between a monoid M and

a monoid ring k½M� (cf. Bruns & Gubeladze, 2009, Proposition

2.7), (1) is a corollary of the Hilbert basis theorem in ring

theory, which states that a finitely generated k-algebra is

Noetherian (cf. Eisenbud, 1995, ch. I, Section 1.4).

In Ogus (2018, ch. I, Theorem 2.1.17.6), (2) is proved in a

more general setting:

(4) Let f : M! N and g : P! N be monoid homo-

morphisms. If the monoids M and P are finitely generated and

N is integral, then their fiber product M �N P is a finitely

generated monoid.

We note that the fiber product is defined as

M �N P :¼ fðm; pÞ 2 M � P j f ðmÞ ¼ gðpÞg;

and it is easy to see that M �N P is a submonoid of M � P. (2)

can be seen as a special case of (4) by setting g as the inclusion

map N0 ! N.

We note that in Bruns & Gubeladze (2009, Corollary 2.11),

(3) is proved only when N ¼ Rn. In general cases, the asser-

tion follows from (2), applying it to the inclusion map

M ¼ M1 ! N and N0 ¼ M2. We also note that in Bruns &

Gubeladze (2009), a monoid M is called affine when M is

finitely generated and is isomorphic to a submonoid of Zn.

If a cone and a polyhedron are rational [see Example A3(4)

and Example A5(3)], then their restrictions to Zn give a

finitely generated monoid M and a finitely generated

M-module. In (3), we denote by R�0M the cone which consists

of the elements of the form
Pc

i¼1 rimi 2 R
n with c 2 Z> 0,

ri 2 R�0 and mi 2 M.

Proposition A8. (1) (Bruns & Gubeladze, 2009, Lemma 2.9)

For a rational cone C � Rn, the monoid C \ Zn is finitely

generated.
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(2) (Bruns & Gubeladze, 2009, Theorem 2.12) For a rational

polyhedron P � Rn, the set P \ Zn is a finitely generated

(recðPÞ \ Zn)-module.

(3) (Bruns & Gubeladze, 2009, Corollary 2.10) If M is a

finitely generated submonoid of Zn, then the monoid

R�0M \ Zn is finitely generated as an M-module.

(4) [Bruns & Gubeladze, 2009, Proof of Corollary 2.11(a)] If

M and N are submonoids of Zn, then R�0M \ R�0N =

R�0ðM \ NÞ holds.

In the rest of this section, we summarize the fact on the

Hilbert function of graded monoids.

Definition A9. (1) A (positively) graded monoid is a monoid M

equipped with a monoid homomorphism deg : M! Z�0. We

say that m 2 M is of degree i if degðmÞ ¼ i. Furthermore, we

write Mi :¼ fm 2 M j degðmÞ ¼ ig.

(2) Let M be a graded monoid. A graded M-module is an

M-module X equipped with a map deg : X ! Z with the

condition Mi þ Xj � Xiþj for all i � 0 and j 2 Z, where we set

Xi :¼ fm 2 X j degðmÞ ¼ ig. This condition is equivalent to

saying that degðmÞ þ degðxÞ ¼ degðmþ xÞ holds for any

m 2 M and x 2 X .

Definition A10. Let M be a graded monoid and X a graded

M-module with #Xn <1 for any n � 0. The function

HðX;�Þ : Z�0�!Z�0; n7!#Xn

is called the Hilbert function associated with X. Its generating

function

HXðtÞ :¼
P1
n¼0

HðX; nÞtn 2 Z½½t��

is called the Hilbert series of X. The Hilbert function and the

Hilbert series depend on the grading of M and X.

Proposition A11. (Bruns & Gubeladze, 2009, Theorems 6.38

and 6.39; Bruns & Herzog, 1993, Theorem 4.1.3, Proposition

4.4.1, Theorem 4.4.3) Let M be a graded monoid which is

generated by finitely many elements of positive degree. Let X

be a finitely generated graded M-module. Then the Hilbert

series HXðtÞ is a rational function, and the Hilbert function

HðX;�Þ is of quasi-polynomial type. Moreover, if M is

generated by elements of degree one, then HðX;�Þ is of

polynomial type.

We note that the assumption #Xn <1 in Definition A10 is

satisfied under the assumption of Proposition A11.

A2. Finite generation of modules

The following theorem is the main theorem in this

appendix.

Theorem A12. Let M1 and M2 be finitely generated sub-

monoids of an integral monoid M and let Xi � M be a finitely

generated Mi-submodule for i ¼ 1; 2. Then the ðM1 \M2Þ-

module X1 \ X2 is finitely generated.

Proof. Since Xi is a finitely generated Mi-module, there is a

finite subset Fi of Xi such that Mi þ Fi ¼ Xi, and so one has

X1 \ X2 ¼
[

f12F1; f22F2

ðf1 þM1Þ \ ðf2 þM2Þ:

Hence by replacing Xi with fi þMi, we may assume that Xi is

the form of Xi ¼ fi þMi for each i ¼ 1; 2. Next, replacing M

with Mgp, we may assume that M is an abelian group.

Furthermore, replacing M with the monoid generated by

�f1;�f2 and the elements of �M1;�M2, we may assume that

M is finitely generated as a monoid. Let h1; . . . ; hn be a

generator of M. Then, one can take a surjective homo-

morphism:

’ : Zn
�0�!M; ðm1;m2; . . . ;mnÞ7!

P
i

mihi:

Then, the monoid ’�1ðMiÞ is finitely generated by Proposition

A6(2). Take an element �i 2 Z
n
�0 satisfying ’ð�iÞ ¼ �fi. Since

Xi ¼ fi þMi, we have

�i þ ’
�1
ðXiÞ � ’

�1
ðMiÞ:

Hence Proposition A6(1) shows that the ’�1ðMiÞ-module

�i þ ’
�1ðXiÞ is finitely generated, and hence its translation

’�1ðXiÞ is also a finitely generated ’�1ðMiÞ-module. Moreover,

we have

’ð’�1
ðM1 \M2ÞÞ ¼ M1 \M2 and ’ð’�1

ðX1 \ X2ÞÞ ¼ X1 \ X2

since ’ is surjective. Thus, in order to prove that X1 \ X2

is finitely generated as a ðM1 \M2Þ-module, it is sufficient

to show that ’�1ðX1 \ X2Þ is finitely generated as a

’�1ðM1 \M2Þ-module. Since we have

’�1
ðM1 \M2Þ ¼ ’

�1
ðM1Þ \ ’

�1
ðM2Þ;

’�1ðX1 \ X2Þ ¼ ’
�1ðX1Þ \ ’

�1ðX2Þ;

the proof is completed if we show the theorem in the case of

M ¼ Zn
�0.

The set fi þ R�0Mi is a rational polyhedron satisfying

recðfi þ R�0MiÞ ¼ R�0Mi. Proposition A8(2) implies that the

set

Y :¼ ðf1 þ R�0M1Þ \ ðf2 þ R�0M2Þ \ Z
n

is a finitely generated ðR�0M1 \ R�0M2 \ Z
n
Þ-module. Since

M1 and M2 are finitely generated monoids, so is the monoid

M1 \M2 by Proposition A6(3). Furthermore,

R�0M1 \ R�0M2 \ Z
n
¼ R�0ðM1 \M2Þ \ Z

n

holds by Proposition A8(4), and it is a finitely generated

ðM1 \M2Þ-module by Proposition A8(3). Hence Y is a finitely

generated ðM1 \M2Þ-module [cf. Example A5(2)]. Since

X1 \ X2 � Y is an ðM1 \M2Þ-submodule, it is a finitely

research papers
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generated ðM1 \M2Þ-module by Proposition A6(1), which

completes the proof. &

Acknowledgements

We thank Professors Atsushi Ito, Masanori Kobayashi, Ryoko

Oishi-Tomiyasu and Motoko Kato for many discussions. We

also thank the referees, whose comments and suggestions have

greatly improved the article.

Funding information

This work was supported by the Program for Leading

Graduate Schools, MEXT, Japan. The first two authors are

partially supported by the Grant-in-Aid for Young Scientists

(KAKENHI No. 18K13438 and No. 18K13384, respectively).

References

Bruns, W. & Gubeladze, J. (2009). Polytopes, Rings, and K-theory.
Springer Monographs in Mathematics. Dordrecht: Springer.

Bruns, W. & Herzog, J. (1993). Cohen–Macaulay Rings. Cambridge
Studies in Advanced Mathematics, Vol. 39. Cambridge University
Press.

Conway, J. & Sloane, N. (1997). Proc. R. Soc. London A, 453, 2369–
2389.

Eisenbud, D. (1995). Commutative Algebra. Graduate Texts in
Mathematics, Vol. 150. New York: Springer-Verlag.

Eon, J.-G. (2002). Acta Cryst. A58, 47–53.
Eon, J. (2012). Struct. Chem. 23, 987–996.
Goodman-Strauss, C. & Sloane, N. J. A. (2019). Acta Cryst. A75, 121–

134.
Grosse-Kunstleve, R. W., Brunner, G. O. & Sloane, N. J. A. (1996).

Acta Cryst. A52, 879–889.
Ogus, A. (2018). Lectures on Logarithmic Algebraic Geometry.

Cambridge Studies in Advanced Mathematics, Vol. 178. Cambridge
University Press.

O’Keeffe, M. (1995). Z. Kristallogr. 210, 905–908.
O’Keeffe, M. (1998). Z. Kristallogr. 213, 135–140.
Shutov, A. & Maleev, A. (2018). Acta Cryst. A74, 112–122.
Shutov, A. & Maleev, A. (2019). Z. Kristallogr. 234, 291–299.
Shutov, A. & Maleev, A. (2020). Z. Kristallogr. 235, 157–166.
Wakatsuki, S. (2018). Suurikagaku Jissenkenkyu Letter, LMSR 2018-

21.

148 Yusuke Nakamura et al. � Coordination sequences of crystals Acta Cryst. (2021). A77, 138–148

research papers

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pl5008&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pl5008&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pl5008&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pl5008&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pl5008&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pl5008&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pl5008&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pl5008&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pl5008&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pl5008&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pl5008&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pl5008&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pl5008&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pl5008&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pl5008&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pl5008&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pl5008&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pl5008&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pl5008&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pl5008&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pl5008&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pl5008&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pl5008&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pl5008&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pl5008&bbid=BB15

